Selective Transmission of Single Photon Responses by Saturation at the Rod-to-Rod Bipolar Synapse
نویسندگان
چکیده
A threshold-like nonlinearity in signal transfer from mouse rod photoreceptors to rod bipolar cells dramatically improves the absolute sensitivity of the rod signals. The work described here reaches three conclusions about the mechanisms generating this nonlinearity. (1) The nonlinearity is caused primarily by saturation of the feedforward rod-to-rod bipolar synapse and not by feedback from horizontal or amacrine cells. This saturation renders the rod bipolar current insensitive to small changes in transmitter release from the rod. (2) Saturation occurs within the G protein cascade that couples receptors to channels in the rod bipolar dendrites, with little or no contribution from presynaptic mechanisms or saturation of the postsynaptic receptors. (3) Between 0.5 and 2 bipolar transduction channels are open in darkness at each synapse, compared to the approximately 30 channels open at the peak of the single photon response.
منابع مشابه
Noise removal at the rod synapse of mammalian retina.
Mammalian rods respond to single photons with a hyperpolarization of about 1 mV which is accompanied by continuous noise. Since the mammalian rod bipolar cell collects signals from 20-100 rods, the noise from the converging rods would overwhelm the single-photon signal from one rod at scotopic intensities (starlight) if the bipolar cell summed signals linearly (Baylor et al., 1984). However, it...
متن کاملTransmission of single photon signals through a binary synapse in the mammalian retina.
At very low light levels the sensitivity of the visual system is determined by the efficiency with which single photons are captured, and the resulting signal transmitted from the rod photoreceptors through the retinal circuitry to the ganglion cells and on to the brain. Although the tiny electrical signals due to single photons have been observed in rod photoreceptors, little is known about ho...
متن کاملTransmission of scotopic signals from the rod to rod-bipolar cell in the mammalian retina
Mammals can see at low scotopic light levels where only 1 rod in several thousand transduces a photon. The single photon signal is transmitted to the brain by the ganglion cell, which collects signals from more than 1000 rods to provide enough amplification. If the system were linear, such convergence would increase the neural noise enough to overwhelm the tiny rod signal. Recent studies provid...
متن کاملIn vivo studies of signaling in rod pathways of the mouse using the electroretinogram
PURPOSE (a) To examine the possibility that there is a threshold in the synaptic mechanism linking rods to rod bipolar cells that can reduce the transmission of continuous noise from the rods without blocking the transmission of any significant proportion of single-photon responses. (b) To estimate the level of this threshold and the amplitude of the continuous noise which it can serve to reduc...
متن کاملAbsence of Synaptic Regulation by Phosducin in Retinal Slices
Phosducin is an abundant photoreceptor protein that binds G-protein βγ subunits and plays a role in modulating synaptic transmission at photoreceptor synapses under both dark-adapted and light-adapted conditions in vivo. To examine the role of phosducin at the rod-to-rod bipolar cell (RBC) synapse, we used whole-cell voltage clamp recordings to measure the light-evoked currents from both wild-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 41 شماره
صفحات -
تاریخ انتشار 2004